【技术】解析动力电池管理系统技术趋势及方案精选

2017-05-30 13:02

  电动车未来将以锂电池为主要动力驱动来源,主因在于锂电池有高能量密度优势,所以性能较为稳定。然而锂电池大量生产时品质不易掌握,电池芯出厂时电量即存在些微差异,且随着操作、老化等因素,电池间不一致性将愈趋明显,电池效率、寿命也都将变差,再加上过充或过放等情况,严重时可能导致起火燃烧等安全问题。

  BMS属于电池包一部分,电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管能,电器部件及线束实现了控制系统对电池的安全及连接径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。

  BMS主要作用包括:估测电池的荷电状态,检测电池的使用状态,管控电池的循环寿命。在充电过程中对电池的热管理,启停锂电池的冷却系统,同时也管理单体电池之间的均衡,防止单体电池过充过放产生。另外监测整个电池的健康工作状态。

  目前电池管理系统有主动式均衡和被动式均衡两种管理模式。两种管理模式各有优缺点,所采用的方式普遍为采集单体电池电压,电流,以及温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令,最后将整个处理的信息指令通过CAN通讯系统传送给汽车中央控制单元或整车VMS系统。

  国内主流车用BMS厂家都有被动均衡技术,而且其中绝大部分都有主动均衡技术储备。在厂家给的配置单上,主动均衡是一个“选配”功能。被动均衡的BMS装机量较大,占据新能源汽车市场较高的份额,远远高于主动均衡BMS的市场份额。国内的新能源汽车主要是中低端产品,考虑到成本及配置需求方面,被动均衡相对较易接受。随着新能源汽车产品的向高端发展,对BMS的要求也越来越高,主动均衡技术将成为未来的发展趋势。

  在软件方面其最核心的技术在于SOC的估测算法,电动汽车动力电池的电荷状态估测是BMS控制算法的核心所在,直接影响到电动汽车的使用寿命和运行稳定性状态。SOC 是BMS中最重要的参数,目前大部分BMS厂家的SOC估算精度是在5%以内的,部分是在8%以内。

  对于BMS的技术,目前各大芯片厂家都推出了自己的解决方案,以及针对性的底层芯片,供厂家进行二次开发。常用的主流方案以及芯片有这么几个大的厂商,TI(仪器)、ST(意法半导体)、ADI(亚德诺)、ATMEL(艾特梅尔)、Infinen(英飞凌)、Linear(凌力尔特)、Maxim(美信)等厂家。国内的BMS企业都是在此基础上进行二次开发,包括硬件设计,软件的搭建等。

  锂离子电池组包含大量的电池单元,必须正确才能提高电池效率,延长电池寿命确保安全性。方案中的 6 通道 AD7280A 器件充当主器,向系统演示平台评估板提供精确的电压测量数据,而 6 通道 AD8280 器件充当副器和系统。

  AD8280 是一款用于锂离子电池组的纯硬连线安全器,配合 AD7280A 使用时,可提供具有可调阈值检测和共用或单独报警输出的低成本、冗余、备用电池器。它具有自测功能,因此适合混合动力电动汽车等高可靠性应用或者不间断电源等高压工业应用。AD7280A 和 AD8280 均从的电池单元获得电源。

  ADuM5404集成一个DC-DC转换器,用于向ADuM1201和ADuM1401隔离器的高压端供电,以及向AD7280ASPI接口提供VDRIVE电源。这些4通道、磁性隔离电是安全、可靠、易用的光耦合器替代解决方案。

  TI推荐电动车所采用的主动均衡方式:每个电池芯藉由矩阵开关控制变压器与充电线的组合,形成一个有调整功能的电压/电流蓄水池的功能,当电池芯由于多次充放电后产生不一致性而导致整组电池充放电容量下降,可藉由后端连接蓄水池的线做调整,充电时不会因为到某个电池芯内压过高而停止充电,放电时也可以完全的100%的能源,进而延长电动车的行驶距离。

  TI在隔离式DC-DC主动均衡技术的能源转换效率高达87%。像EM1410芯片组由5颗核心芯片加上5颗电源供应芯片所组成,其中最主要的 EMB1432为十四信道AFE芯片、EMB1428为七信道闸控制器芯片,与EMB1499为七信道电压控制芯片等,来建构十四通道双向主动式电池芯均衡功能,14颗电池芯与最高60V工作电压,提供5V双向均衡电压与最大750V堆栈输出电压能力,并满足AECQ-100车用电子验证标准。

  6月1日-2日,由电动汽车资源网承办的“2017中国新能源汽车第三届运营商与车企对接采购暨整车企业与零配件企业技术交流论坛”将于重庆召开,预计规模在600人,将会邀请整车、零部件、运营商等探讨2017年新补贴政策影响下电动汽车发展方向、技术创新、降成本和运营模式等问题。现正火热招商报名中,联系人:刘俏美,电话:。